Part Number Hot Search : 
MBT3904 CSA733 MBT3904 MAX14591 0LT1G TC1039 TS3842B MB15E03
Product Description
Full Text Search
 

To Download IRFZ44V Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFZ44V n-c hannel power m osfet page 1 application features ? dc motor control ? ups ? class d amplifier v dss r ds(on) i d 60v 16.5m  60a ? low on resistance ? low gate charge ? peak current vs pulse width curve ? inductive switching curves pin configuration symbol to-220 front view 1 23 gate drain source d s g n-channel mosfet 3 absolute maximum ratings rating symbol value unit drain to source voltage (note 1) v dss 60 v drain to current  continuous tc = 25 : , v gs @10v  continuous tc = 100 : , v gs @10v  pulsed tc = 25 : , v gs @10v (note 2) i d i d i dm 60 43 241 a gate-to-source voltage  continue v gs 20 v total power dissipation derating factor above 25 : p d 150 1.0 w w/ : peak diode recovery dv/dt (note 3) dv/dt 4.5 v/ns operating junction and storage temperature range t j , t stg -55 to 175 : single pulse avalanche energy l=144 h,i d =40 amps e as 500 mj maximum lead temperature for soldering purposes t l 300 : maximum package body for 10 seconds t pkg 260 : pulsed avalanche rating i as 60 a thermal resistance symbol parameter min typ max units test conditions r  jc junction-to-case 1.0 : /w water cooled heatsink, p d adjusted for a peak junction temperature of +175 : r  ja junction-to-ambient 62 : /w 1 cubic foot chamber, free air !
IRFZ44V n-c hannel power m osfet page 2 ordering information part number package .................... IRFZ44V ................................................ to-220 electrical characteristics unless otherwise specified, t j = 25 : . c IRFZ44V characteristic symbol min typ max units off characteristics drain-to-source breakdown voltage (v gs = 0 v, i d = 250 a) v dss 60 v breakdown voltage temperature coefficient (reference to 25 : , i d = 250 a) ? v dss / ? t j 0.069 mv/ : drain-to-source leakage current (v ds = 60 v, v gs = 0 v, t j = 25 : ) (v ds = 48 v, v gs = 0 v, t j = 150 : ) i dss 25 250 a gate-to-source forward leakage (v gs = 20 v) i gss 100 na gate-to-source reverse leakage (v gs = -20 v) i gss -100 na on characteristics gate threshold voltage (v ds = v gs , i d = 250 a) v gs(th) 1.0 2.0 3.0 v static drain-to-source on-resistance (note 4) (v gs = 10 v, i d = 60a) r ds(on) 16.5 m  forward transconductance (v ds = 15 v, i d = 60a) (note 4) g fs 36 s dynamic characteristics input capacitance c iss 1430 pf output capacitance c oss 420 pf reverse transfer capacitance (v ds = 25 v, v gs = 0 v, f = 1.0 mhz) c rss 88 pf total gate charge (v gs = 10 v) q g 37.7 nc gate-to-source charge q gs 8.4 nc gate-to-drain (miller) charge (v ds = 30 v, i d = 60 a, v gs = 10 v) (note 5) q gd 9.8 nc resistive switching characteristics turn-on delay time t d(on) 12.1 ns rise time t rise 64 ns turn-off delay time t d(off) 69 ns fall time (v dd = 30 v, i d = 60 a, v gs = 10 v, r g = 9.1  ) (note 5) t fall 39 ns source-drain diode characteristics continuous source current (body diode) i s 60 a pulse source current (body diode) integral pn-diode in mosfet i sm 241 a diode forward on-voltage (i s = 60 a, v gs = 0 v) v sd 1.5 v reverse recovery time t rr 55 ns reverse recovery charge (i f = 60a, v gs = 0 v, d i /d t = 100a/s) q rr 110 nc !
t p , rectangular pulse duration (s) t c , case temperature ( o c ) figure 3. maximum continuous drain current vs case temperature p d , power dissipation ( w ) t c , case temperature ( o c ) v ds , drain-to-source voltage ( v ) 40 i d , drain current (a) i d , drain current (a) r ds(on) , drain-to-source on resistance (m : v gs , gate-to-source voltage ( v ) figure 4. typical output characteristics figure 5. typical drain-to-source on resistance vs gate voltage and drain current 30 10 0 60 100 80 1.000 0.100 0.010 0 0 figure 2. maximum power dissipation vs case temperature 0 5 10 6 7 8 9 10 25 50 75 100 125 150 25 50 75 100 125 150 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00 1e+01 20 15 notes: duty factor: d=t1/t2 peak t j =p dm x z t jc x r t jc +t c 20% 10% 5 % 2% single pulse 1% p dm t 1 t 2 v g s = 1 0 v v gs = 6v pulse duration = 250 s duty cycle = 0.5% max t c = 25 o c figure 1. maximum effective thermal imped ance, junctio n-to-case v gs = 3.5v v gs = 4.5v v g s = 8 v v g s = 1 5 v v gs = 4v v g s =5 v 100 duty cycle 45 50 40 30 20 4 3 i d = 14a i d = 28a i d = 55 a 5 z t jc , thermal impedance pulse duration = 250 s duty cycle = 0.5% max t c = 25 o c 50% 0.001 120 200 35 25 40 20 40 180 160 140 80 60 20 175 120 140 175 70 60 50 v gs = 3v 220 IRFZ44V n-c hannel power m osfet page 3 !
figure 6. maximum peak current capability figure 10. typical drain-to-source on resistance figure 9. typical drain-to-source on resistance vs drain current t p , pulse width (s) i dm , peak current (a) 10000 100 1 v gs , gate-to-source voltage ( v ) i d , drain-to-source current (a) t av , time in avalanche (s) i as , avalanche current (a) 1000 100 10 1 i d , drain current (a) t j , junction temperature ( o c ) r ds(on) , drain-to-source resistance (normalized) 2.5 2.0 1.5 0.5 1.0. r ds(on) , drain-to-source on resistance (m : ) 15 10 5 0 figure 7. typical transfer characteristics figure 8. unclamped ind uctive switching capability 1e-6 1e-3 10e-3 100e-3 10e-6 100e-6 -75 -50 -25 0 25 50 75 100 125 150 0 50 100 150 200 250 1.5 2.0 2.5 3.0 3.5 1e-6 10e-6 100e-6 1e-3 10e-3 100e-3 1e+0 10e+0 transconductance may limit current in this region for temperatures above 25 o c derate peak current as follows: ii 25 150 t c C 125 ---------------------- = pulse duration = 250 s duty cycle = 0.5% max v ds = 10 v +175 o c +25 o c -55 o c starting t j = 25 o c starting t j = 150 o c v gs =10v pulse duration = 250 s duty cycle = 0.5% max v gs = 10v, i d = 15a 1000 4.0 if r z 0: t av = (l/r) ln[(i as r)/(1.3bv dss -v dd )+1] if r= 0: t av = (li as )/(1.3bv dss -v dd ) r equals total series resistance of drain circuit 10 20 25 30 35 40 10 vs junction temperature v gs = 10v pulse duration = 10 s duty cycle = 0.5% max t c =25c 20 30 40 50 175 page 4 IRFZ44V n-c hannel power m osfet !
figure 11. typical breakdown voltage vs junction temperature figure 12. typical threshold voltage vs junction temperature figure 15. typical gate charge vs gate-to-source voltage figure 16. typical body diode transfer characteristics i sd , reverse drain current (a) v gs , gate-to-source voltage (v) c, capacitance (pf) i d , drain current (a) v gs(th) , threshold voltage (normalized) bv dss , drain-to-source breakdown voltage (normalized) t j , junction temperature ( o c) v ds , drain-to-source voltage (v) v ds , drain voltage (v) v sd , source-to-drain voltage (v) q g , total gate charge (nc) t j , junction temperature ( o c) 1.1 1.2 1.0 0.8 0.6 40 100 10 1 12 8 2 0 1.10 1.05 1.00 0.95 0.90 0.9 0.7 2000 0 -75 -50 -25 0.0 25 50 75 100 125 150 -75 -50 -25 50 100 75 125 150 25 0.0 1 10 100 0.01 0.1 1 10 100 0 0.3 0.5 0.7 0.9 1.1 1.3 20 40 30 10 4 6 10 v gs = 0v i d = 250 a v gs = v ds i d = 250 a t j = max rated, t c = 25 o c single pulse operation in this area may be limited by r ds(on) 10s 1 0 0 1 . 0 m 1 0 m s d c c oss c rss c iss v gs = 0v, f = 1mhz c iss = c gs + c gd c oss # c ds + c gd c rss = c gd i d = 59a 1 5 0 o c 2 5 o c figure 14. typical capacitance vs drain-to-source voltage 0.5 1000 80 60 20 0 2500 500 1000 1500 3000 v gs = 0v - 5 5 o c 100 1.20 1.15 175 175 v ds =45v v ds =30v v ds =15v 5152535 180 160 140 120 f igure 13. maximum forward bias safe operating area page 5 IRFZ44V n-c hannel power m osfet !


▲Up To Search▲   

 
Price & Availability of IRFZ44V

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X